
© 2008 IBM Corporation

IBM Software Group

DB2 Partitioning

Data Management Emerging Partnerships and Technologies

IBM Toronto Lab

© 2008 IBM Corporation

IBM Software Group

Data Management – DB2 9.5

Winter/Spring 2008

Data Management Emerging Partnerships and Technologies

IBM Toronto Lab

3 © 2008 IBM Corporation

Overview

� Partitioning Before DB2 9

� Partitioning in DB2 9

� How to Create Table Partitioning

� Storing Table Objects

� Accessing Partitioned Data

� Roll-Out Scenario

� Roll-In Scenario

� Putting it all together

4 © 2008 IBM Corporation

Partitioning Before DB2 9

5 © 2008 IBM Corporation

DB2 Partitioning : Shared Nothing?

� Allows you to partition your database

across multiple servers or within a

large SMP server

� Users can connect to the database and

issue commands as usual without the

need to know the database is spread

across among several partitions

� Allows for scalability cause you can

add machines and spread your

database across them

� Means more CPU’s, more memory, and

more disks

� Ideal for larger databases from data

warehousing, data mining, online

analytical processing or working with

online transaction processing

workloads

DB2 with DPF

� Why Partition – Scale Out , Performance …

� DB2 core Scale-Out architecture based on

Parallelism aka (Shared Nothing)

– Inter and intraNode/partition Parallelism… Inter Query

Parallelism.. Intra Query…

– performance, divide and rule, limitless scale out

– Cost-based Optimizer with Query Rewrite

– Full Parallelism for SQL and Utilities

– Dynamic throttling based on load

– Asynchronous I/O Parallel I/O

6 © 2008 IBM Corporation

Database Partitioning Feature

� Allows you to partition your

database across one or more
multiple servers

� Allows you to have multiple partitions

across one or more multiple servers

7 © 2008 IBM Corporation

Database Partitioning Feature (DPF)

� Database Level Partitioning

– DPF

– Database on shared disk or dedicated
disk

– Active-Active/Active-
Passive/Cascade scenarios

• By setting DB2NODE Environment
Variables to active (1) or passive (0)

– SQL Functions shipped between
partitions

– Adapts to all hardware configurations
(small SMP, Large SMP, NUMA,
clusters)

– To protect against failure use HACMP,
HADR, etc.

1serverA1

1ServerD7

0serverD6

1serverC5

0serverC4

1serverB3

0serverB2

0serverA0

Logical
Port

Server
Name

Partition

8 © 2008 IBM Corporation

DPF: How it’s Distributed

� To visualize how a db2 environment is split
in a DPF system

� All partitions share

– Instance level profile registry

– Database manager config file (dbm.cfg)

– System db dictionary

– Node dictionary

– DCS directory

� Each server can have its own

– Environment variables

– Global-level profile registry variable

– Database configuration file

– Local database directory

– Log files

– Lock managers

– Can have different FixPak levels

9 © 2008 IBM Corporation

DPF: How its Distributed

� Partition Group is a set of one or more database partitions

� Distribution Map1 is an internally generated array used for decided where data will be
stored within the partitions

– Partition numbers are specified in a round-robin fashion in the array

� Distribution key1 is a column(s) that determines the partition on which a particular row of
data is physically stored

– Can define key using CREATE TABLE statement with the DISTRIBUTE BY2 clause

� A combination of distribution map, distribution key and a hashing algorithm is used to
determine which partition to store a given row

� Note 1: Prior to DB2 9, the DISTRIBUTION MAP and DISTRIBUTION KEY terms were known as PARTITIONING MAP and
PARTITIONING KEY respectively.

� Note 2: Prior to DB2 9, the distribution key can be defined using create table statement with the PARTITIONING BY clause, the older
syntax is retained for backward compatibility.

10 © 2008 IBM Corporation

Multidimensional Clustering

� Allows for clustering of the physical data pages in

multiple dimensions

� Guarantees clustering over time even if there are

frequent INSERT operations performed

� Blocks

– DB2 places records that have the

same column values in physical

locations that are close together

� Block Indexes

– indexes that point to an entire block

of pages

� Cells

– Blocks that have the same dimension values are group

together

11 © 2008 IBM Corporation

Partitioning in DB2 9

12 © 2008 IBM Corporation

DB2 Table Level Partitioning

SALESDATA

SALESDATA
JanPart

SALESDATA
FebPart

SALESDATA
MarPart

� Allows a single logical table to be broken up
into multiple separate physical storage
objects (up to 32K range partitions)

� Each corresponds to a ‘partition’ of the table

� Partition boundaries correspond to specified

value ranges in a specified partition key

� Main Benefits

� Increase table capacity limit

� Partition elimination during SQL processing
improve performance

� Optimized roll-in / roll-out processing (e.g.
minimized logging)

� “Divide and conquer” management of huge
tables

� Family compatibility with DB2 on z/OS and
IDS

� Improved HSM integration

Without Partitioning

With Partitioning

Applications see
single table

13 © 2008 IBM Corporation

Table Partitioning : More Benefits

Tablespace 1

Table_1

Table_3

Tablespace CTablespace BTablespace A

Table_1.p1 Table_1.p2 Table_1.p3

Table_2.p1

Table_2.p2Table_3.p1 Table_3.p2

Table_3.p3 Table_3.p4

� More Benefits

� Partition a single table across

multiple tablespaces

� SET INTEGRITY processing

is now online

� Indices of single partitioned

tables can be placed in

separate tablespaces and

bufferpools

Table_2.p3

Without Partitioning

With Partitioning (example)

Tablespace 2

Table_2

14 © 2008 IBM Corporation

Terminology (Don’t Let It Confuse You)

� DATABASE PARTITIONING

– Distributing data by key hash across logical nodes of the database (aka DPF)

� DATABASE PARTITION

– An individual “node” of a database that is using database partitioning (aka a DPF
node)

� TABLE PARTITIONING (new)

– Splitting data by key range over multiple physical objects within a logical
database partition

� RANGE or DATA PARTITION (new)

– An individual “range” of a table partitioned using table partitioning

– Represented by an object on disk

� MULTI DIMENSIONAL CLUSTERING

– Organizing data in table (or range of a table) by multiple key values (aka MDC)

Database Partitioning, Table Partitioning and Multi Dimensional Clustering
can be used simultaneously on the same table (more on this later)Note

15 © 2008 IBM Corporation

How to Create Table Partitioning

16 © 2008 IBM Corporation

Creating a Range Partitioned Table : Overview

tbsp3tbsp2tbsp1

t1.p1 t1.p2 t1.p3

� Short and long forms

� Partitioning column(s)

� Must be base types (eg. No LOBS,
LONG VARCHARS)

� Can specify multiple columns

� Can specify generated columns

� Can specify tablespace using IN clause

� Notes

� SQL0327N The row cannot be

inserted because it is outside the

bounds

� Special values, MINVALUE,

MAXVALUE can be used to specify

open ended ranges, eg:

CREATE TABLE t1 …
(STARTING(MINVALUE)
ENDING(MAXVALUE) …

Short Form
CREATE TABLE t1(c1 INT) IN tbsp1, tbsp2, tbsp3

PARTITION BY RANGE (c1)

(STARTING (1) ENDING (99) EVERY (33))

- or –

Long Form
CREATE TABLE t1(c1 INT)

PARTITION BY RANGE (c1)

(PARTITION p1 STARTING(1) ENDING(33) IN tbsp1,

PART p2 ENDING(66) IN tbsp2,

PART p3 ENDING(99) IN tbsp3)

1 <= c1 <= 33 34 <= c1 <= 66 67 <= c1 <= 99

17 © 2008 IBM Corporation

Create Table : Inclusive and Exclusive Bounds

� Use the EXCLUSIVE keyword to indicate range boundary is exclusive

– By default, bounds are inclusive

– This examples avoid ‘holes’ by making each ending bound the
same as the next starting bound, and using EXCLUSIVE for the
ending bound

CREATE TABLE sales(sale_date DATE, customer INT)

PARTITION BY RANGE(sale_date)

(STARTING MINVALUE ENDING ‘1/1/2000’ EXCLUSIVE,

STARTING ‘1/1/2000’ ENDING ‘2/1/2000’ EXCLUSIVE,

STARTING ‘2/1/2000’ ENDING ‘3/1/2000’ EXCLUSIVE,

…

STARTING ‘11/1/2000’ ENDING ‘12/1/2000’ EXCLUSIVE,

STARTING ‘12/1/2000’ ENDING ’12/31/2004’);

Avoid
Changing

from 2/28 to
2/29 for leap

year 2000

18 © 2008 IBM Corporation

Create Table : NULL Handling

� Use the NULLS FIRST/LAST keywords to specify

what partition NULLs are placed in:

– Default is NULLS LAST: rows with NULL in the partitioning

key column are placed in the range ending at MAXVALUE

– Use NULLS FIRST to put them in the range starting with

MINVALUE

…

PARTITION BY RANGE(sale_date NULLS FIRST)

…

19 © 2008 IBM Corporation

Partitioning on Multiple Columns

� Multiple columns can be specified in the
PARTITION BY clause

– Analogous to multiple columns in an index key

CREATE TABLE sales(year INT, month INT)

PARTITION BY RANGE(year, month)

(
STARTING (2000, 1) ENDING (2000, 3),

STARTING (2000, 4) ENDING (2000, 6),

STARTING (2000, 7) ENDING (2000, 9),

STARTING (2000, 10) ENDING (2000, 12),

STARTING (2001,1) ENDING (2001,3)
);

20 © 2008 IBM Corporation

Multiple Columns Are NOT Multiple Dimensions

� Ranges cannot overlap

– This example fails because the second range

overlaps with the first

– Use Multidimensional Clustering (MDC) if you need
to define grids or cubes

CREATE TABLE neighborhoods(street INT, avenue INT)

PARTITION BY RANGE (street, avenue)

(STARTING (1,1) ENDING (10,10),

STARTING (1,11) ENDING (10,20));

(1,1)

(1,5)

(1,10)

(1,11)

(5,1)

(5,10)

(10,1)

(10,10)

(10,20)

(15,1)

(15,10)

21 © 2008 IBM Corporation

Storing Table Objects

22 © 2008 IBM Corporation

Storage Mapping : Indexes are Global in DB2 9

tbsp3tbsp2tbsp1

t1.p1 t1.p2 t1.p3

Indexes are global (in DB2 9)
� RIDs in index pages contain 2-byte

partition ID

�Each index is in a separate storage object

� By default, in the same tablespace
as the first data partition

� Can be created in different
tablespaces, via

• INDEX IN clause on CREATE TABLE
(default is tablespace of first partition)

• Note: INDEX IN clause works

for MDC indexes

(‘block’ indexes)

• New IN clause on CREATE

INDEX

�Recommendation

� Place indexes in LARGE tablespaces

CREATE TABLE t1(c1 INT, c2 INT)

IN tbsp1, tbsp2, tbsp3

INDEX IN tbsp4

PARTITION BY RANGE(c1)

(STARTING FROM (1) ENDING (100)EVERY (33))

CREATE INDEX i1(c1)

CREATE INDEX i2(c2) IN tbsp5

tbsp5tbsp4

i2i1

Tip

23 © 2008 IBM Corporation

Storage Mapping : Indexes

� Without table partitioning, all indexes for a
particular table are stored in the same storage
object*

� SMS: If the table is in an SMS tablespace, this
single index object is always in the same
tablespace as the table

� If the table is in a DMS or Auto Storage, this
single index object can be in a different DMS
(specified via INDEX IN table create key word)

� With table partitioning, each index is placed in
it’s own storage object*

� Including MDC (aka block) indexes

� Each index object can be placed in a different
tablespace (regardless of tablespace type) via
INDEX IN index create key word)

tbsp5tbsp4

Without Partitioning

Possible with Partitioning

tbsp5

i1 i2

i2i1

* Of course, in DPF there is a storage object in each database partition in the table’s database partition group

single
storage
object

24 © 2008 IBM Corporation

Index Clustering

K keys in range

Not
Clustered

Clustering
Doesn’t Match

Partitioning

Clustering with
Partition Key as

Prefix

Range scans may require
a working set of K pages

Range scans may require a
working set of 3 pages

Range scans may require a
working set of 1 page

K = # keys in range predicate 3 = # range partitions

rangepage

25 © 2008 IBM Corporation

Index Clustering

� Cluster-ed Index : Index happens to be clustered (typically because you loaded the rows in key
order)

� Cluster-ing Index : DB2 tries to preserve clustering order during inserts

– DB2 probes the clustering index to find what page an existing row with the

same or similar key value exists on

– If the keys found by the probe are on different partitions than the inserted

key, DB2 can’t use this information to preserve clustering

� Recommendations

– Consider a form of clustering (having a clustering or defining a clustered

index) if you have a lot of range scans over a particular key

– Cluster key: Consider prefixing this key with the partitioning columns to
maximize scan performance benefit and DB2’s ability to key the index

clustered eg:

PARTITION BY RANGE (Month, Region)

CREATE INDEX … (Month, Region, Department) CLUSTER
Tip

26 © 2008 IBM Corporation

Storage Mapping : Large Objects are Local

tbsp3tbsp2tbsp1

t1.p1 t1.p2 t1.p3

� Large objects (LOBs, etc) are local

� Separate storage object for each
partition

� By default in same partition as
corresponding data partition

� Can be specified per partition via
LONG IN clause on CREATE
TABLE

CREATE TABLE t1(c1 INT, c2 INT, c3 BLOB)

IN tbsp1, tbsp2, tbsp3

INDEX IN tbsp4

LONG IN tbsp6, tbsp7, tbsp8

PARTITION BY RANGE(c1)

(STARTING FROM (1) ENDING (100)

EVERY (33))

CREATE INDEX i1(c1)

CREATE INDEX i2(c2) IN tbsp5

tbsp5

i2

tbsp8tbsp7tbsp6

t1.LONG1 t1.LONG2 t1.LONG3

tbsp4

i1

27 © 2008 IBM Corporation

Accessing Partitioned Data

28 © 2008 IBM Corporation

Partition Elimination : Table Scans

tbsp4tbsp3tbsp2

t1.p2 t1.p3 t1.p4

SELECT * FROM t1

WHERE

year = 2001 AND month > 7

� Will only access data in
tablespace tbsp3 and tbsp4

SELECT * FROM t1

WHERE

A>50 AND A<150

� Will only access data in tbsp1
and tbsp2

2Q/2001 3Q/2001 4Q/2001

tbsp1

t1.p1

1Q/2001

tbsp3tbsp2tbsp1

t1.p1 t1.p2 t1.p3

0<=A<100 100<=A<200 200<=A<300

scan

scan

29 © 2008 IBM Corporation

DB2 uses partition id
stored with index keys to
do partition elimination

Partition Elimination : Index Scan

� Scan involving two indexes:

SELECT l_shipdate, l_partkey, l_returnflag

FROM lineitem

WHERE l_shipdate BETWEEN ‘01/01/1993' and '03/31/1993‘

AND l_partkey=49981

l_shipdate l_partkey

present

in both?

fetchIndex
Anding

RIDs for

‘49981’

RIDs for

date range

l_partkey

With

Partitioning
& Partition

Elimination matching

range?

RIDs for

‘49981’

fetch

30 © 2008 IBM Corporation

Partition Elimination Shown in DB2 Explain (1 of 2)

Statement:

select l_shipdate, l_partkey, l_returnflag

from lineitem

where l_shipdate between '01/01/1993' and '03/31/1993' and

l_partkey=49981

Estimated Cost = 50.485638

Estimated Cardinality = 2.126619

(2) Access Table Name = KBECK.LINEITEM ID = -6,-32768
| Index Scan: Name = KBECK.LI_PK ID = 2

| | Regular Index (Not Clustered)

| | Index Columns:

| | | 1: L_PARTKEY (Ascending)

| #Columns = 2

| Data-Partitioned Table
| Scan Direction = Reverse

| Data Partition Elimination Info:
| | Range 1:

| | | #Key Columns = 1

| | | | Start Key: Inclusive Value

| | | | | 1: 1993-01-01

| | | | Stop Key: Inclusive Value

| | | | | 1: 1993-03-31

| Active Data Partitions: 13-15
| #Key Columns = 1

| | Start Key: Inclusive Value

| | | | 1: 49981

ID = -6,-32768

Data-Partitioned Table
Scan Direction = Reverse

Data Partition Elimination Info:

Active Data Partitions: 13-15

31 © 2008 IBM Corporation

Partition Elimination Shown in DB2 Explain (2 of 2)

| | Regular Index (Not Clustered)
| | Index Columns:
| | | 1: L_PARTKEY (Ascending)
| #Columns = 2
| Data-Partitioned Table
| Scan Direction = Reverse
| Data Partition Elimination Info:
| | Range 1:
| | | #Key Columns = 1
| | | | Start Key: Inclusive Value
| | | | | 1: 1993-01-01
| | | | Stop Key: Inclusive Value
| | | | | 1: 1993-03-31
| Active Data Partitions: 13-15
| #Key Columns = 1
| | Start Key: Inclusive Value
| | | | 1: 49981
| | Stop Key: Inclusive Value
| | | | 1: 49981
| Data Prefetch: None
| Index Prefetch: None
| Lock Intents
| | Table: Intent Share
| | Row : Next Key Share
| Sargable Predicate(s)
| | #Predicates = 2

(1) | | Return Data to Application
| | | #Columns = 3

(1) Return Data Completion
End of section

Data Partition Elimination Info:

| Range 1:

| | #Key Columns = 1

| | | Start Key: Inclusive Value

| | | | 1: 1993-01-01

| | | Stop Key: Inclusive Value

| | | | 1: 1993-03-31

32 © 2008 IBM Corporation

New Operations for Roll-Out and Roll-In

� ALTER TABLE … DETACH

– An existing range is split off as a stand alone table

– Data instantly becomes invisible

– Minimal interruption to other queries accessing table

� ALTER TABLE … ATTACH

– Incorporates an existing table as a new range

– Follow with SET INTEGRITY to validate data and maintain indexes

– Data becomes visible all at once after COMMIT

– Minimal interruption to other queries accessing table

� Key points

– No data movement

– Nearly instantaneous

– SET INTEGRITY is now online

33 © 2008 IBM Corporation

Roll-Out Scenario

34 © 2008 IBM Corporation

Typical Roll-Out Scenario (today)

CREATE TABLE sales_old …

INSERT INTO sales_old (SELECT * FROM sales WHERE …);

DELETE FROM sales WHERE ….

– Slow, error prone

– What will queries show while DELETE is in
progress?

• Different sets of results, possibility of deadlocks

– Also possible to use UNION ALL views

35 © 2008 IBM Corporation

Roll-Out Scenario (with Table Partitioning)

ALTER TABLE Big_Table DETACH PARTITION
p3 INTO TABLE OldMonthSales

� Queries are drained and table locked

� Very fast operation

� No data movement required

� Index maintenance done later (asynchronously in
background)

� Dependent MQT’s go offline

COMMIT

� Detached data now invisible

� Detached partition ignored in index scans

� Rest of Big_Table available

� Index maintenance is kicked off

SET INTEGRITY FOR Mqt1,Mqt2 FULL ACCESS

� (Optional) maintains MQTs on Big_Table

EXPORT OldMonthSales; DROP
OldMonthSales

� (Optional) this becomes a standalone table that you
can do whatever you want with

Tablespace A

Big_Table.p1

Tablespace B

Big_Table.p2

Tablespace C

Big_Table.p3

Tablespace A

Big_Table.p1

Tablespace B

Big_Table.p2

Tablespace C

OldMonthSales

DETACH

Range partition becomes a
stand-alone table

36 © 2008 IBM Corporation

Table Availability During Roll-Out

ALTER … DETACH

Table Z-lock

requested by

ALTER

Read/write

Lock

granted

ALTER

completes

COMMIT

Lock released

Asynchronous Index Cleanup

SET INTEGRITY for MQT

maintenance completely

independent

37 © 2008 IBM Corporation

Roll-In Scenario

38 © 2008 IBM Corporation

Typical Roll-In Scenario (today)

� Data in a single table

– Extract data from operational data store

– Do data cleansing/transformation

– Load into table

– Use SET INTEGRITY to check RI constraints, maintain MQTs

� Using UNION ALL view

– Extract/transform/load into a new table

– Drop and recreate the view to incorporate new data

– SET INTEGRITY for constraints, MQTs

39 © 2008 IBM Corporation

Roll-In Summary

CREATE TABLE NewMonth

� Create empty staging table

LOAD / Insert into NewMonthSales

(…perform ETL on NewMonthSales)

ALTER TABLE Big_Table ATTACH PARTITION
STARTING ’03/01/2005’ENDING ’03/31/2005’
FROM TABLE NewMonthSales

• Very fast operation

• No data movement required
• Index maintenance done later

COMMIT
� New data still not visible

SET INTEGRITY FOR Big_Table ……

• Potentially long running operation
• Validates data

• Maintains global indexes, MQTs

• Existing data available while it runs

COMMIT

• New data visible

Tablespace A

Big_Table.p1

Tablespace B

Big_Table.p2

Tablespace C

Big_Table.p3

Tablespace A

Big_Table.p1

Tablespace B

Big_Table.p2

Tablespace C

NewMonthSales

LOAD

ATTACH

40 © 2008 IBM Corporation

Use SET INTEGRITY to Complete the Roll-in

SET INTEGRITY FOR sales ALLOW WRITE ACCESS,
sales_by_region ALLOW WRITE ACCESS

IMMEDIATE CHECKED INCREMENTAL
FOR EXCEPTION IN sales USE sales_ex;

� SET INTEGRITY does

– Index maintenance

– Checking of range and other constraints

– MQT maintenance

– Generated column maintenance

� Table is online through out process except for ATTACH

� New data becomes visible at end of SET INTEGRITY

� Specify ALLOW WRITE ACCESS the default is old behaviour

– Also available: ALLOW READ ACCESS

� Use an exception table, any violation will fail the entire operation

41 © 2008 IBM Corporation

Comparison of Table Availability

Extract,

Transform,

Cleanse

Extract,

Transform,

Cleanse

LOAD

Load Data Build Indexes Commit

LOAD into

staging table ATTACH

SET INTEGRITY

SET INTEGRITY

Build Indexes

Constraints

MQT maint

Constraints

MQT maint

read only off line

off line

available

available available

NEW METHOD: ATTACH + SI

OLD METHOD: LOAD + SI

off
line

read only

42 © 2008 IBM Corporation

Online SET INTEGRITY Without Table Partitioning

� The online SET INTEGRITY also works with non-partitioned tables

� SET INTEGRITY after LOAD can now be read access until the end

Extract,

Transform,

Cleanse

LOAD

Load Data Build Indexes

SET INTEGRITY

Constraints

MQT maint

read only off lineavailable

Extract,

Transform,

Cleanse

LOAD

Load Data Build Indexes

SET INTEGRITY

Constraints

MQT maint

read only off lineavailable read only

NEW: Online SET INTEGRITY

OLD: Offline SET INTEGRITY

43 © 2008 IBM Corporation

Putting it all together

44 © 2008 IBM Corporation

Multidimensional Clustering with Table Partitioning and
DPF

CREATE TABLE my_hybrid

(A INT, B INT, C Date, D INT …)

IN Tablespace A, Tablespace B, Tablespace C …

INDEX IN Tablespace B

DISTRIBUTE BY HASH (A)

PARTITION BY RANGE (B) (STARTING FROM (100) ENDING (300) EVERY (100))

ORGANIZE BY DIMENSIONS (A,B,C) Quiz: What isn’t
shown correctly
in this picture?

304/0221101

104/0221101

104/0221101

DCBA

204/027101

104/0221101

104/0221101

DCBA

304/0221101

104/027101

DCBA

Data blocks without MDC
Data blocks with MDC

204/027101

104/027101

DCBA

45 © 2008 IBM Corporation

Table Partitioning with DPF and MDC

Tablespace A

Part 1

Tablespace B Tablespace C Tablespace A Tablespace B Tablespace C

Part 2 Part 3 Part 1 Part 2 Part 3

B

Data Row

Distribute via Hash

Partition By Range Partition By Range

Organize By Organize By Organize By Organize By Organize By Organize By

Quiz: What isn’t
shown correctly
in this picture?

B

AA

DB partition 1 DB partition 2

CC

Physical or Logical Node Physical or Logical Node

Application

46 © 2008 IBM Corporation

Hybrid Partitioning

999 Machines

Database Partitioning

Table
Partitioning

32K Partitions

64G

A-C

64G

D-M

64G

N-Q

64G

R-Z

MDC

© 2008 IBM Corporation

IBM Software Group

Data Management – DB2 9.5

Winter/Spring 2008

Data Management Emerging Partnerships and Technologies

IBM Toronto Lab

© 2008 IBM Corporation

IBM Software Group

DB2 Partitioning

Data Management Emerging Partnerships and Technologies

IBM Toronto Lab

