|
d S(t) ---- dt |
= |
d (vt) ------ dt |
= | v |
|
d f(x)) ---- dx |
= |
d ax ---- dx |
= | a |
|
Δ S(t) ---- Δ t |
|
Δ S(t) ---- Δ t |
= |
6 - 2 |
= | 3 |
|
d S(t) ---- dt |
= |
d (vt) ------ dt |
= | v (equation 2) |
| S'(t) | = |
d S(t) ---- dt |
= | speed |
| S'(t) | = |
d S(t) ---- dt |
= at |
|
┌ 1 ┐ │ 3 │ └ 2 ┘ |
· |
┌ 0 ┐ │ 1 │ └ 0 ┘ |
= 3 |
|
Δr(t) ---- Δt |
= | Δv(t) (equation 7) |
|
dr(t) ---- dt |
= | v(t) (equation 8) |
|
Δv(t) ---- Δt |
= | Δ a(t) (equation 9) |
|
dv(t) ---- dt |
= |
d2r(t) ---- dt2 |
= | a(t) (equation 10) |
| r(t) | = | |r(t)| rU(t) | = | r(t) rU(t) |
| v(t) | = |
d r(t) ---- dt |
= |
d r(t) ---- rU(t) dt |
+ |
d rU(t) ------ r(t) dt |
(equation 8' - note the accent) |
|
d rU(t) ------ dt |
| r(t) = |
┌ 2cos(t) ┐ └ sin(t) ┘ |
| v(t) | = |
dr(t) ---- dt |
= |
┌ -2sin(t) ┐ └ cos(t) ┘ |
|
dr(t) ---- dt |
= |
dx(t) ---- ex dt |
+ |
dy(t) ---- ey dt |
+ |
dz(t) ---- ez dt |
| S'(t) | = |
d S(t) ----- dt |
= |
d (vt) ------ dt |
= | v |
| S'(t) | = |
d S(t) ----- dt |
= |
d -- dt |
½ at2 | = | at | = | v |
|
dr(t) ---- dt |
= | v(t) |
|
dv(t) ---- dt |
= |
d2r(t) ---- dt2 |
= | a(t) |
| F1 = |
┌ -6 ┐ └ 0 ┘ |
| F2 = |
┌ 12 ┐ └ 0 ┘ |
| FR = |
┌ -6 ┐ └ 0 ┘ |
+ |
┌ 12 ┐ └ 0 ┘ |
= |
┌ -6 + 12 ┐ └ 0 + 0 ┘ |
= |
┌ 6 ┐ └ 0 ┘ |
| F1 = |
┌ -2 ┐ └ 5 ┘ |
| F2 = |
┌ 1 ┐ └ -3 ┘ |
| FR = |
┌ -2 ┐ └ 5 ┘ |
+ |
┌ 1 ┐ └ -3 ┘ |
= |
┌ -2 + 1 ┐ └ 5 + -3 ┘ |
= |
┌ -1 ┐ └ 2 ┘ |
| sin(α) = |
|Fp| ---- |Fg| |
| a | = |
(v AFTER - v BEFORE) ------------- Δ t |
| m a | = | m |
(v AFTER - v BEFORE) ------------- Δ t |
| F | = | m |
(v AFTER - v BEFORE) ------------- Δ t |
| F Δ t | = | m (v AFTER - v BEFORE) | = | mv AFTER - mv BEFORE (equation 11) |
| cos(α) = |
|FP| ---- |F| |
| vT | = |
S -- t |
= |
2πR -- T |
(equation 22) |
| ω | = |
2π -- T |
= |
Δ θ -- Δ t |
(equation 23) |
| vT | = |
2πR -- T |
= | ωR | (equation 24) |
| aT | = |
vT2 -- R |
(equation 28) |
| FT | = |
mvT2 -- R |
(equation 29) |
| F = | G |
M1 * M2 -------- r2 |
| F = | 6.673 * 10-11 |
70 * 6*1024 -------------- (6.38 x 106)2 |
| Epot, M1 = | - G |
M1 * M2 -------- r |
Work of F from infinity to r = |
∫infr G |
M1 * M2
|
dr |
| ½ m * vesc2 | + | - G |
m * M ----- r |
= 0 |
| ½ m * vesc2 | = | G |
m * M ----- r |
| ½ vesc2 | = | G |
M -- r |
| vesc | = | √ ( |
2GM ---- r |
) |
| F = | G |
M1 * M2 -------- r2 |
| F = | 6.673 * 10-11 |
70 * 6*1024 -------------- (6.38 x 106)2 |
| Δ Epot | = | Epot, orbit - Epot, Earth | = |
-G*ME*m -------------- rorbit |
- |
-G*ME*m -------------- rEarth |