| F(t) = |
┌ sin(t) ┐ └ cos(t) ┘ |
| G(t) = |
┌ sin(t) ┐ │ 2t │ └ t ┘ |
| F((x, y, z)) = |
┌ 2x – 2y + z ┐ │ 3x + y – z │ │ x + 5y │ └ 6x – 3y + 3z ┘ |
| ∂ φ(x,y,z) ---------- ∂ x |
, | ∂ φ(x,y,z) ---------- ∂ y |
, | ∂ φ(x,y,z) ---------- ∂ z |
| ∇ φ | = | ∂ φ(x,y,z) ---------- ∂ x |
êx | + | ∂ φ(x,y,z) ---------- ∂ y |
êy | + | ∂ φ(x,y,z) ---------- ∂ z |
êz | (equation 1) |
| ∇ φ | = |
┌ ∂/∂x φ(x,y,z) ┐ │ ∂/∂y φ(x,y,z) │ └ ∂/∂z φ(x,y,z) ┘ |
(equation 2) |
| ∇ | = |
┌ ∂/∂x ┐ │ ∂/∂y │ └ ∂/∂z ┘ |
(equation 3) |
| F | = |
┌ Fx(x,y,z) ┐ │ Fy(x,y,z) │ └ Fz(x,y,z) ┘ |
| ∇ · F | = |
┌ ∂/∂x ┐ │ ∂/∂y │ └ ∂/∂z ┘ |
· |
┌ Fx(x,y,z) ┐ │ Fy(x,y,z) │ └ Fz(x,y,z) ┘ |
= | ∂/∂x Fx(x,y,z) + ∂/∂y Fy(x,y,z) + ∂/∂z Fz(x,y,z) | (equation 4) |
| A = |
┌ a1 ┐ │ a2 │ └ a3 ┘ |
| B = |
┌ b1 ┐ │ b2 │ └ b3 ┘ |
| A · B = |
a1b1+a2b2+a3b3 |